
IBM Hight Performance Computing Toolkit

MPI Tracing/Profiling User Manual

Advanced Computing Technology Center
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598

November 13, 2008

Contents

1 Overview 2

2 System and Software Requirement 2

3 Compiling and Linking 2
3.1 AIX on Power . 3
3.2 Linux on Power . 3
3.3 Blue Gene/L . 3
3.4 Blue Gene/P . 4

4 Environment Variable 4

5 Output 7
5.1 Plain Text File . 7
5.2 Viz File . 9
5.3 Trace File . 11

6 Configuration 11
6.1 Configuration Function . 11
6.2 Data Structure . 12
6.3 Utility Functions . 13
6.4 Example . 16

7 Final Note 16
7.1 Overhead . 16
7.2 Multi-Threading . 17

8 Contacts 17

1

1 Overview

This is the documentation for the IBM High Performance Computing Toolkit
MPI Profiling/Tracing library. This library collects profiling and tracing data
for MPI programs.

The library file names and their usage are shown in Table 1.

Name Usage
libmpitrace.a library file for both C and Fortran application
mpt.h C header file

Table 1: Library file names and usage

Note:

1. The C header file is used when it needs to configure the library. Please
see Section 6 for details.

2 System and Software Requirement

Current supported architecture/OS and required software are:

• AIX on Power (32 bit and 64 bit)

– IBM Parallel Environment (PE) for AIX program product and its
Parallel Operating Environment (POE).

• Linux on Power (32 bit and 64 bit)

– IBM Parallel Environment (PE) for Linux program product and its
Parallel Operating Environment (POE).

• Blue Gene/L

– System Software version 3.

• Blue Gene/P

3 Compiling and Linking

The trace library uses the debugging information stored within the binary to
map the performance information back to the source code. To use the library,
the application must be compiled with the ”-g” option.

The application may consider turning off or having lower level of optimiza-
tion (-O2, -O1,...) when linking with the MPI profiler/tracer. High level opti-
mization will affect the correctness of the debugging information. It may also
affect the call stack behavior.

2

To link the application with the library, add three options to your command
line: the option -L/path/to/libraries, where /path/to/libraries is the path where
the libraries are located, the option -lmpitrace (this trace library should be
before the MPI library -lmpich) in the linking order, and the option -llicense to
link the license library. For some platforms, if the shared library liblicense.so
is used, you may need to set the environment variable LD LIBRARY PATH to
$IHPCT BASE/lib(lib64) to make sure the application finds the correct library
during runtime.

3.1 AIX on Power
• C example

CC = /usr/lpp/ppe.poe/bin/mpcc_r
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense

mpitrace.ppe: mpi_test.c
$(CC) -g -o $@ $< $(TRACE_LIB) -lm

• Fortran example

FC = /usr/lpp/ppe.poe/bin/mpxlf_r
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense

swim.ppe: swim.f
$(FC) -g -o $@ $< $(TRACELIB)

3.2 Linux on Power
• C example

CC = /opt/ibmhpc/ppe.poe/bin/mpcc
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense

mpitrace: mpi_test.c
$(CC) -g -o $@ $< $(TRACE_LIB) -lm

• Fortran example

FC = /opt/ibmhpc/ppe.poe/bin/mpfort
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense

statusesf_trace: statusesf.f
$(FC) -g -o $@ $< $(TRACE_LIB)

3.3 Blue Gene/L

• C example

BGL_INSTALL = /bgl/BlueLight/ppcfloor
LIBS_RTS = -lrts.rts -ldevices.rts
LIBS_MPI = -L$(BGL_INSTALL)/bglsys/lib -lmpich.rts -lmsglayer.rts $(LIBS_RTS)
XLC_TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense
XLC_RTS = blrts_xlc
XLC_CFLAGS = -I$(BGL_INSTALL)/bglsys/include -g -O -qarch=440 -qtune=440 -qhot

mpitrace_xlc.rts: mpi_test.c
$(XLC_RTS) -o $@ $< $(XLC_CFLAGS) $(XLC_TRACE_LIB) $(LIBS_MPI) -lm

3

• Fortran example

BGL_INSTALL = /bgl/BlueLight/ppcfloor
LIBS_RTS = -lrts.rts -ldevices.rts
LIBS_MPI = -L$(BGL_INSTALL)/bglsys/lib -lmpich.rts -lmsglayer.rts $(LIBS_RTS)
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense
BG_XLF = blrts_xlf
FC_FLAGS = -I$(BGL_INSTALL)/bglsys/include -g -O

statusesf_trace.rts: statusesf.f
$(BG_XLF) -o $@ $< $(FC_FLAGS) $(TRACE_LIB) $(MPI_LIBS)

3.4 Blue Gene/P

• C example

BGPHOME=/bgsys/drivers/ppcfloor
CC=$(BGPHOME)/comm/bin/mpixlc
CFLAGS = -I$(BGPHOME)/comm/include -g -O
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense -lgetarg

mpitrace: mpi_test.c
$(CC) -o $@ $< $(CFLAGS) $(TRACE_LIB) -lm

NOTE: the libgetarg.a is a dummy library in C.

• Fortran example

BGPHOME=/bgsys/drivers/ppcfloor
CC=$(BGPHOME)/comm/bin/mpixlf77
FFLAGS = -I$(BGPHOME)/comm/include -g -O
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense

statusesf: statusesf.f
$(CC) -o $@ $< $(FFLAGS) $(TRACE_LIB)

4 Environment Variable

• TRACE ALL EVENTS
The wrappers can be used in two modes. The default value is set to yes
and will collect both a timing summary and a time-history of MPI calls
suitable for graphical display.

If this environment variable is set to be yes, it will save a record of all
MPI events 1 after MPI Init(), until the application completes, or until
the trace buffer is full.

Another method is to control time-history measurement within the appli-
cation by calling routines to start/stop tracing:

– Fortran syntax
1By default, for MPI ranks 0-255, or for all MPI ranks if there are 256 or fewer processes

in MPI COMM WORLD. You can change this by setting the TRACE ALL TASKS or using
configuration described in Section 6.

4

call mt_trace_start()
do work + mpi ...
call mt_trace_stop()

– C syntax

void MT_trace_start(void);
void MT_trace_stop(void);

MT_trace_start();
do work + mpi ...
MT_trace_stop();

– C++ syntax

extern "C" void MT_trace_start(void);
extern "C" void MT_trace_stop(void);

MT_trace_start();
do work + mpi ...
MT_trace_stop();

To use this control method, the environment variable needs to be disabled
(otherwise it would trace all events):

export TRACE_ALL_EVENTS=no (bash)
setenv TRACE_ALL_EVENTS no (csh)

• TRACE ALL TASKS

When saving MPI event records, it is easy to generate trace files that
are just too large to visualize. To cut down on the data volume, the de-
fault behavior when you set TRACE ALL EVENTS=yes is to save event
records from MPI tasks 0-255, or for all MPI processes if there are 256
or fewer processes in MPI COMM WORLD. That should be enough to
provide a good visual record of the communication pattern. If you want
to save data from all tasks, you have to set this environment variable to
yes:

export TRACE_ALL_TASKS=yes (bash)
setenv TRACE_ALL_TASKS yes (csh)

• TRACE MAX RANK

To provide more control, you can set MAX TRACE RANK=#. For ex-
ample, if you set MAX TRACE RANK=2048, you will get trace data
from 2048 tasks, 0-2047, provided you actually have at least 2048 tasks
in your job. By using the time-stamped trace feature selectively, both in
time (trace start/ trace stop), and by MPI rank, you can get good insight
into the MPI performance of very large complex parallel applications.

5

• OUTPUT ALL RANKS

For scalability reason, by default only four ranks will generate plain text
files and the events in the trace: rank 0, rank with (min,med,max) MPI
communication time. if rank 0 is one of the ranks with (min,med,max)
MPI communication time, only three ranks will generate plain text files
and events in the trace. If plain text files and events should be output
from all ranks, set this environment variable to yes:

export OUTPUT_ALL_RANKS=yes (bash)
setenv OUTPUT_ALL_RANKS yes (csh)

• TRACEBACK LEVEL

In some cases there may be deeply nested layers on top of MPI, and you
may need to profile higher up the call chain (functions in the call stack).
You can do this by setting this environment variable (default value is 0).
For example, setting TRACEBACK LEVEL=1 tells the library to save
addresses starting not with the location of the MPI call (level = 0), but
from the parent in the call chain (level = 1).

• SWAP BYTES

The event trace file is binary, and so it is sensitive to byte order. For
example, Blue Gene/L is big endian, and your visualization workstation
is probably little endian (e.g., x86). The trace files are written in little
endian format by default. If you use a big endian system for graphical
display (examples are Apple OS/X, AIX p-series workstations, etc.), you
can set an environment variable

export SWAP_BYTES=no (bash)
setenv SWAP_BYTES no (csh)

when you run your job. This will result in a trace file in big endian format.

• TRACE SEND PATTERN (Blue Gene/L and Blue Gene/P Only)

In either profiling or tracing mode there is an option to collect information
about the number of hops for point-to-point communication on the torus.
This feature can be enabled by setting an environment variable:

export TRACE_SEND_PATTERN=yes
setenv TRACE_SEND_PATTERN yes

When this variable is set, the wrappers keep track of how many bytes are
sent to each task, and a binary file ”send bytes.matrix” is written during
MPI Finalize which lists how many bytes were sent from each task to all
other tasks. The format of the binary file is:

6

D00, D01, ...D0n, D10, ..., Dij , ..., Dnn

where the data type Dij is double (in C) and it represents the size of
MPI data sent from rank i to rank j. This matrix can be used as input to
external utilities that can generate efficient mappings of MPI tasks onto
torus coordinates. The wrappers also provide the average number of hops
for all flavors of MPI Send. The wrappers do not track the message-traffic
patterns in collective calls, such as MPI Alltoall. Only point-to-point send
operations are tracked.

The AverageHops for all communications on a given processor is measured
as follows:

AverageHops =

∑
i

Hopsi ×Bytesi∑
i

Bytesi

where Hopsi is the distance between the processors for ith MPI communi-
cation and Bytesi is the size of the data transferred in this communication.
The logical concept behind this performance metric is to measure how far
each byte has to travel for the communication (in average). If the com-
munication processor pair is close to each other in the coordinate, the
AverageHops value will tend to be small.

5 Output

After building the binary executable and setting the environment, run the ap-
plication as you normally would. To have better control for the performance
data collected and output, please refer to Sections 4 and 6.

5.1 Plain Text File

The wrapper for MPI Finalize() writes the timing summaries in files called
mpi profile.taskid. The mpi profile.0 file is special: it contains a timing sum-
mary from each task. Currently for scalability reason, by default only four ranks
will generate plain text file: rank 0, rank with (min,med,max) MPI communica-
tion time. To change this default setting, please refer to the TRACE ALL RANKS
environment variable.

An example of mpi profile.0 file is shown as follows:

elapsed time from clock-cycles using freq = 700.0 MHz

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Isend 21 99864.3 0.000
MPI_Irecv 21 99864.3 0.000
MPI_Waitall 21 0.0 0.014

7

MPI_Barrier 47 0.0 0.000

total communication time = 0.015 seconds.
total elapsed time = 4.039 seconds.

Message size distributions:

MPI_Isend #calls avg. bytes time(sec)
3 2.3 0.000
1 8.0 0.000
1 16.0 0.000
1 32.0 0.000
1 64.0 0.000
1 128.0 0.000
1 256.0 0.000
1 512.0 0.000
1 1024.0 0.000
1 2048.0 0.000
1 4096.0 0.000
1 8192.0 0.000
1 16384.0 0.000
1 32768.0 0.000
1 65536.0 0.000
1 131072.0 0.000
1 262144.0 0.000
1 524288.0 0.000
1 1048576.0 0.000

MPI_Irecv #calls avg. bytes time(sec)
3 2.3 0.000
1 8.0 0.000
1 16.0 0.000
1 32.0 0.000
1 64.0 0.000
1 128.0 0.000
1 256.0 0.000
1 512.0 0.000
1 1024.0 0.000
1 2048.0 0.000
1 4096.0 0.000
1 8192.0 0.000
1 16384.0 0.000
1 32768.0 0.000
1 65536.0 0.000
1 131072.0 0.000
1 262144.0 0.000
1 524288.0 0.000
1 1048576.0 0.000

Communication summary for all tasks:

minimum communication time = 0.015 sec for task 0
median communication time = 4.039 sec for task 20
maximum communication time = 4.039 sec for task 30

taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops
0 0 0 0 0 0.015 1.00
1 1 0 0 0 4.039 1.00
2 2 0 0 0 4.039 1.00
3 3 0 0 0 4.039 4.00
4 0 1 0 0 4.039 1.00
5 1 1 0 0 4.039 1.00
6 2 1 0 0 4.039 1.00
7 3 1 0 0 4.039 4.00
8 0 2 0 0 4.039 1.00

8

9 1 2 0 0 4.039 1.00
10 2 2 0 0 4.039 1.00
11 3 2 0 0 4.039 4.00
12 0 3 0 0 4.039 1.00
13 1 3 0 0 4.039 1.00
14 2 3 0 0 4.039 1.00
15 3 3 0 0 4.039 7.00
16 0 0 1 0 4.039 1.00
17 1 0 1 0 4.039 1.00
18 2 0 1 0 4.039 1.00
19 3 0 1 0 4.039 4.00
20 0 1 1 0 4.039 1.00
21 1 1 1 0 4.039 1.00
22 2 1 1 0 4.039 1.00
23 3 1 1 0 4.039 4.00
24 0 2 1 0 4.039 1.00
25 1 2 1 0 4.039 1.00
26 2 2 1 0 4.039 1.00
27 3 2 1 0 4.039 4.00
28 0 3 1 0 4.039 1.00
29 1 3 1 0 4.039 1.00
30 2 3 1 0 4.039 1.00
31 3 3 1 0 4.039 7.00

MPI tasks sorted by communication time:
taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops

0 0 0 0 0 0.015 1.00
9 1 2 0 0 4.039 1.00

26 2 2 1 0 4.039 1.00
10 2 2 0 0 4.039 1.00
2 2 0 0 0 4.039 1.00
1 1 0 0 0 4.039 1.00

17 1 0 1 0 4.039 1.00
5 1 1 0 0 4.039 1.00

23 3 1 1 0 4.039 4.00
4 0 1 0 0 4.039 1.00

29 1 3 1 0 4.039 1.00
21 1 1 1 0 4.039 1.00
15 3 3 0 0 4.039 7.00
19 3 0 1 0 4.039 4.00
31 3 3 1 0 4.039 7.00
20 0 1 1 0 4.039 1.00
6 2 1 0 0 4.039 1.00
7 3 1 0 0 4.039 4.00
8 0 2 0 0 4.039 1.00
3 3 0 0 0 4.039 4.00

16 0 0 1 0 4.039 1.00
11 3 2 0 0 4.039 4.00
13 1 3 0 0 4.039 1.00
14 2 3 0 0 4.039 1.00
24 0 2 1 0 4.039 1.00
27 3 2 1 0 4.039 4.00
22 2 1 1 0 4.039 1.00
25 1 2 1 0 4.039 1.00
28 0 3 1 0 4.039 1.00
12 0 3 0 0 4.039 1.00
18 2 0 1 0 4.039 1.00
30 2 3 1 0 4.039 1.00

5.2 Viz File

In addition to the mpi profile.taskid files, the library may also generate mpi profile taskid.viz
XML format files that be viewed by using Peekperf as shown in Figure 1.

9

Figure 1: Peekperf

10

Figure 2: Peekview

5.3 Trace File

The library will also generate a file called single trace. The Peekview utility can
be used (inside Peekperf or independently) to display this trace file as shown in
Figure 2.

6 Configuration

In this section, we describe a more general way to make the tracing tool config-
urable, and thereafter allows users to focus on interesting performance points.
By providing a flexible mechanism to control the events that are recorded, the
library can remain useful for even very large-scale parallel applications.

6.1 Configuration Function

There are three functions that can be rewritten to configure the library. During
the runtime, the return values of those three functions decide what performance
information to be stored, which process (MPI rank) will output the performance
information, and what performance information will be output to files.

• int MT trace event(int); Whenever a MPI function (that is profiled/traced)
is called, this function will be invoked. The integer passed into this func-
tion is the ID number for the MPI function. The return value is 1 if the
performance information should be stored in the buffer; otherwise 0.

11

• int MT output trace(int); This function is called once in the MPI Finalize().
The integer passed into this function is the MPI rank. The return value
is 1 if it will output performance information; otherwise 0.

• int MT output text(void); This function will be called inside the MPI Finalize()
once. The user can rewrite this function to customize the performance
data output (e.g., user-defined performance metrics or data layout).

6.2 Data Structure

Each data structure described in this section is usually used with associated
utility function described in Section 6.3 to provide user information when im-
plementing the configuration functions described in Section 6.1.

• MT summarystruct

This data structure holds statistics results including MPI ranks and sta-
tistical values (e.g., Min, Max, Median, Average and Sum). The data
structure is used together with MT get allresults() utility function.

struct MT_summarystruct {
int min_rank;
int max_rank;
int med_rank;
void *min_result;
void *max_result;
void *med_result;
void *avg_result;
void *sum_result;
void *all_result;
void *sorted_all_result;
int *sorted_rank;

};

• MT envstruct

This data structure is used with MT get environment() utility function.
It holds MPI process self information includes MPI rank (mpirank), total
number of MPI tasks (ntasks), and total number of MPI function types
(that are profiled/traced; nmpi). For Blue Gene/L, it also provides the
process self environment information including x,y,z coordinates in the
torus, dimension of the torus (xSize, ySize, zSize), the processor ID (pro-
cid) and the CPU clock frequency (clockHz).

struct MT_envstruct {
int mpirank;
int xCoord;
int yCoord;
int zCoord;
int xSize;
int ySize;
int zSize;
int procid;
int ntasks;
double clockHz;
int nmpi;

};

12

• MT tracebufferstruct

This data structure is used together with MT get tracebufferinfo() utility
function. It holds information about how many events are recorded (num-
ber events) and information about memory space (in total/used/available;
MBytes) for tracing.

struct MT_tracebufferstruct {
int number_events;
double total_buffer; /* in terms of MBytes */
double used_buffer;
double free_buffer;

};

• MT callerstruct

This data structure holds the caller’s information for the MPI function. It
is used with MT get callerinfo() utility function. The information includes
source file path, source file name, function name and line number in the
source file.

struct MT_callerstruct {
char *filepath;
char *filename;
char *funcname;
int lineno;

};

• MT memorystruct (Blue Gene/L Only)

Since the memory space per compute node on Blue Gene/L is limited.
This data structure is used with MT get memoryinfo() utility function to
provide memory usage information.

struct MT_memorystruct {
unsigned int max_stack_address;
unsigned int min_stack_address;
unsigned int max_heap_address;

};

6.3 Utility Functions

• long long MT get mpi counts(int);

The integer passed in is the MPI ID and the number of call counts for this
MPI function will be returned. The MPI ID can be one of IDs listed in
Table 2.

• double MT get mpi bytes(int);

Similar to the MT get mpi counts(), this function will return the accumu-
lated size of data transferred by the MPI function.

• double MT get mpi time(int);

Similar to the MT get mpi counts(), this function will return the accumu-
lated time spent in the MPI function.

13

COMM SIZE ID COMM RANK ID SEND ID
SSEND ID RSEND ID BSEND ID
ISEND ID ISSEND ID IRSEND ID
IBSEND ID SEND INIT ID SSEND INIT ID
RSEND INIT ID BSEND INIT ID RECV INIT ID
RECV ID IRECV ID SENDRECV ID
SENDRECV REPLACE ID BUFFER ATTACH ID BUFFER DETACH ID
PROBE ID IPROBE ID TEST ID
TESTANY ID TESTALL ID TESTSOME ID
WAIT ID WAITANY ID WAITALL ID
WAITSOME ID START ID STARTALL ID
BCAST ID BARRIER ID GATHER ID
GATHERV ID SCATTER ID SCATTERV ID
SCAN ID ALLGATHER ID ALLGATHERV ID
REDUCE ID ALLREDUCE ID REDUCE SCATTER ID
ALLTOALL ID ALLTOALLV ID

Table 2: MPI ID

• double MT get avg hops(void);

If the distance between two processors p, q with physical coordinates
(xp, yp, zp) and (xq, yq, zq) is calculated as Hops(p, q) = |xp − xq| + |yp −
yq|+ |zp − zq|. We measure the AverageHops for all communications on
a given processor as follows:

AverageHops =

∑
i

Hopsi ×Bytesi∑
i

Bytesi

where Hopsi is the distance between the processors for ith MPI communi-
cation and Bytesi is the size of the data transferred in this communication.
The logical concept behind this performance metric is to measure how far
each byte has to travel for the communication (in average). If the com-
munication processor pair is close to each other in the coordinate, the
AverageHops value will tend to be small.

• double MT get time(void);

This function returns the time since MPI Init() is called.

• double MT get elapsed time(void);

This function returns the time between MPI Init() and MPI Finalize() are
called.

• char *MT get mpi name(int);

This function takes a MPI ID and returns its name in a string.

14

• int MT get tracebufferinfo(struct MT tracebufferstruct *);

This function returns the size of buffer used/free by the tracing/profiling
tool at the moment.

• unsigned long MT get calleraddress(int level);

This function will return the caller address in the memory.

• int MT get callerinfo(unsigned long caller memory address, struct
MT callerstruct *);

This function takes the caller memory address (from MT get calleraddress())
and returns detailed caller information including the path, the source file
name, the function name and the line number of the caller in the source
file.

• void MT get environment(struct MT envstruct *);

This function returns its self environment information including MPI rank,
physical coordinates, dimension of the block, number of total tasks and
CPU clock frequency.

• int MT get allresults(int data type, int mpi id, struct MT summarystruct
*);

This function returns statistical results (e.g., min, max, median, average)
on primitive performance data (e.g., call counts, size of data transferred,
time...etc.) for specific or all MPI functions.

The data type can be one of the data type listed in Table 3 and mpi id
can be one of the MPI ID listed in Table 2 or ALLMPI ID for all MPI
functions.

COUNTS
BYTES
COMMUNICATIONTIME
STACK
HEAP
MAXSTACKFUNC
ELAPSEDTIME
AVGHOPS

Table 3: Data Type

• int MT get memoryinfo(struct MT memorystruct *); (Blue Gene/L Only)

This function returns the information for the memory usage on the com-
pute node.

15

int MT_trace_event(int id) {

...
now=MT_get_time();
MT_get_environment(&env);
...

/* get MPI function call distribution */
current_event_count=MT_get_mpi_counts();

/* compare MPI function call distribution */
comparison_result
=compare_dist(prev_event_count,current_event_count);

prev_event_count=current_event_count;
/* compare MPI function call distribution */
if(comparison_result==1)

return 0; /* stop tracing */
else

return 1; /* start tracing */
}

int MT_output_trace(int rank) {

if (rank < 32)
return 1; /* output performance data */

else
return 0; /* no output */

}

Figure 3: Sample Code for MPI Tracing Configuration

6.4 Example

In Figure 3 we re-write the MT trace event() and MT output trace() routines
with about 50 lines of code (and use the default version of MT output text())
on Blue Gene/L. The function automatically detects the communication pat-
tern and shuts off the recording of trace events after the first instance of the
pattern. Also only MPI ranks less than 32 will output performance data at
the end of program execution. As shown in the figure, utility functions such
as MT get time() and MT get environment() help the user easily obtain infor-
mation needed to configure the library. In this example, MT get time() returns
the execution time spent so far and MT get environment() returns the process
personality including its physical coordinates and MPI rank.

7 Final Note

7.1 Overhead

The library implements wrappers that use the MPI profiling interface, and have
the form:

int MPI_Send(...) {
start_timing();

16

PMPI_Send(...);
stop_timing();
log_the_event();

}

When event tracing is enabled, the wrappers save a time-stamped record
of every MPI call for graphical display. This adds some overhead, about 1-2
microseconds per call. The event-tracing method uses a small buffer in memory
- up to 3 × 104 events per task - and so this is best suited for short-running
applications, or time-stepping codes for just a few steps. To further trace/profile
large scale application, configuration may be required to improve the scalability.
Please refer Section 6 for details.

7.2 Multi-Threading

The current version is not thread-safe, so it should be used in single-threaded
applications, or when only one thread makes MPI calls. The wrappers could be
made thread-safe by adding mutex locks around updates of static data - which
would add some additional overhead.

8 Contacts

• I-Hsin Chung (ihchung@us.ibm.com)
Comments, corrections or technical issues.

• David Klepacki (klepacki@us.ibm.com)
IBM High Performance Computing Toolkit licensing and distributions.

17

